On the Adaptive Nadaraya-watson Kernel Regression Estimators

نویسنده

  • S. Demir
چکیده

Nonparametric kernel estimators are widely used in many research areas of statistics. An important nonparametric kernel estimator of a regression function is the Nadaraya-Watson kernel regression estimator which is often obtained by using a fixed bandwidth. However, the adaptive kernel estimators with varying bandwidths are specially used to estimate density of the long-tailed and multi-mod distributions. In this paper, we consider the adaptive Nadaraya-Watson kernel regression estimators. The results of the simulation study show that the adaptive Nadaraya-Watson kernel estimators have better performance than the kernel estimations with fixed bandwidth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large and moderate deviations principles for kernel estimators of the multivariate regression

Abstract : In this paper, we prove large deviations principle for the Nadaraya-Watson estimator and for the semi-recursive kernel estimator of the regression in the multidimensional case. Under suitable conditions, we show that the rate function is a good rate function. We thus generalize the results already obtained in the unidimensional case for the Nadaraya-Watson estimator. Moreover, we giv...

متن کامل

Sequential Fixed-width Confidence Bands for Kernel Regression Estimation

We consider a random design model based on independent and identically distributed (iid) pairs of observations (Xi, Yi), where the regression function m(x) is given by m(x) = E(Yi|Xi = x) with one independent variable. In a nonparametric setting the aim is to produce a reasonable approximation to the unknown function m(x) when we have no precise information about the form of the true density, f...

متن کامل

A Law of Ti~e Iterated Locarithm for Nonparametric Regression Function Estimators*

to Summary: We prove a law of the iterated logarithm for nonparametric regression function estimators using strong approximations to the two dimensional empirical process. We consider the case of Nadaraya-Watson kernel estimators and of esti-mators based on orthogonal polynomials when the marginal density of the design variable X is unknown or known.

متن کامل

UNIFORM IN BANDWIDTH CONSISTENCY OF KERNEL - TYPE FUNCTION ESTIMATORS By

We introduce a general method to prove uniform in bandwidth consistency of kernel-type function estimators. Examples include the kernel density estimator, the Nadaraya–Watson regression estimator and the conditional empirical process. Our results may be useful to establish uniform consistency of data-driven bandwidth kernel-type function estimators.

متن کامل

Non-parametric Sequential Estimation of a Regression Function Based on Dependent Observations

This paper presents a sequential estimation procedure for an unknown regression function. Observed regressors and noises of the model are supposed to be dependent and form sequences of dependent numbers. Two types of estimators are considered. Both estimators are constructed on the basis of Nadaraya–Watson kernel estimators. First, sequential estimators with given bias and mean square error are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010